ACKNOWLEDGEMENT


  1. The neuropathology of autism: defects of neurogenesis and neuronal migration, and dysplastic changes Jerzy Wegiel • Izabela Kuchna • Krzysztof Nowicki • Humi Imaki • Jarek Wegiel • Elaine Marchi • Shuang Yong Ma • Abha Chauhan • Ved Chauhan • Teresa Wierzba Bobrowicz • Mony de Leon • Leslie A. Saint Louis • Ira L. Cohen • Eric London • W. Ted Brown • Thomas Wisniewski DOI 10.1007/s00401-010-0655-4 (2010
  2. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism Neelroop N. Parikshak1,2*, Vivek Swarup1,2*, T. Grant Belgard1,2*†, Manuel Irimia3,4, Gokul Ramaswami1,2, Michael J. Gandal1,2, Christopher Hartl1,2, Virpi Leppa1, Luis de la Torre Ubieta1,2, Jerry Huang1,2, Jennifer K. Lowe1, Benjamin J. Blencowe5,6,
  3. Steve Horvath7,8 & Daniel H. Geschwind1, doi:10.1038/nature20612  (2016)
  4. The transcriptome of iPSC-derived neuronal cells reveals a module of co-expressed genes consistently associated with autism spectrum disorder K. Griesi-Oliveira 1,2 ● M. S. Fogo1,2 ● B. G. G. Pinto1 ● A. Y. Alves1 ● A. M. Suzuki2 ● A. G. Morales2 ● S. Ezquina 2 ● O. J. Sosa 3 ● G. J. Sutton4 ● D. Y. Sunaga-Franze5 ● A. P. Bueno1 ● G. Seabra6 ● L. Sardinha1 ● S. S. Costa2 ●C. Rosenberg2 ● E. C. Zachi7 ● A. L. Sertie1 ● D. Martins-de-Souza 6,8,9 ● E. M. Reis10 ● I. Voineagu4 ●M. R. Passos-Bueno, https://doi.org/10.1038/s41380-020-0669-9 (2020
  5. Identification of Unique Gene Expression Profile in Children with Regressive Autism Spectrum Disorder (ASD) and Ileocolitis Stephen J. Walker1*, John Fortunato2, Lenny G. Gonzalez3, Arthur Krigsman doi:10.1371/journal.pone.0058058 (2013)
  6. Elevated protein synthesis in microglia causes autism-like synaptic and behavioural aberrations Zhi-Xiang Xu1, Gyu Hyun Kim 2, Ji-Wei Tan1, Anna E. Riso1,3, Ye Sun4, Ethan Y. Xu1,3, Guey-Ying Liao1, Haifei Xu1, Sang-Hoon Lee5, Na-Young Do2, Chan Hee Lee2, Amy E. Clipperton-Allen1, Soonwook Kwon6, Damon T. Page1, Kea Joo Lee 2 & Baoji Xu https://doi.org/10.1038/s41467-020-15530-3 (2020)
  7. Human resident gut microbe Bacteroides thetaiotaomicron regulates colonic neuronal innervation and neurogenic function Rubina Aktar, Nabil Parkar, Regis Stentz, Lucas Baumard, Aimee Parker, Andrew Goldson, Arlaine Brion, Simon Carding, Ashley Blackshaw & Madusha Peirishttps://doi.org/10.1080/19490976.2020.1766936 (2020)
  8. Viable bacterial colonization is highly limited in the human intestine in utero E. Rackaityte 1,2, J. Halkias 3,4, E. M. Fukui1, V. F. Mendoza3,4, C. Hayzelden5, E. D. Crawford 6,7, K. E. Fujimura1,9, T. D. Burt 8 and S. V. Lynch https://doi.org/10.1038/s41591-020-0761-3 (2020)
  9. Human gut colonization may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid Maria Carmen Collado1,2,*, Samuli Rautava3,*, Juhani Aakko1,4, Erika Isolauri3 & Seppo SalminenDOI: 10.1038/srep23129 (2016)
  10. Specificity of gut microbiota in children with an autism spectrum disorder in Slovakia and its correlation with astrocytes activity marker and specific behavioural patterns. A. Tomova , K. Soltys , G. Repiska , L. Palkova , D. Filcikova ,G. Minarik , J. Turna D. Ostatnikova https://doi.org/10.1016/j.physbeh.2019.112745 (2019)
  11. Human Gut Microbiota from Autism Spectrum Disorder Promote Behavioral Symptoms in Mice Gil Sharon, Nikki Jamie Cruz,
  12. Dae-Wook Kang, …, Daniel H. Geschwind, Rosa Krajmalnik-Brown,
  13. Sarkis K. Mazmanian https://doi.org/10.1016/j.cell.2019.05.004 (2019)
  14. Evidence for alternative differential splicing in the blood of young boys with autism spectrum disordersBoryana S Stamova1,2,5*, Yingfang Tian1,2,4, Christine W Nordahl1,3, Mark D Shen1,3, Sally Rogers1,3, David G Amaral1,3 and Frank R Sharp1,2http://www.molecularautism.com/content/4/1/30
  15. Microbial exposure during early human development primes fetal immune cells Archita Mishra, Ghee Chuan Lai, Leong Jing Yao, …, Salvatore Albani, Jerry Kok Yen Chan, Florent Ginhoux  https://doi.org/10.1016/j.cell.2021.04.039 (2021)
  16. The bacterial neurometabolic signature of the gut microbiota of young children with autism spectrum disorders Olga V. Averina1,2,*, Alexey S. Kovtun1,3,*, Svetlana I. Polyakova2, Anastasia M. Savilova2, Denis V. Rebrikov2 and Valery N. Danilenko DOI 10.1099/jmm.0.001178 (2020)
  17. Microbiome–microglia connections via the gut-brain axis Reem Abdel‐Haq1, Johannes C.M. Schlachetzki2, Christopher K. Glass2, and Sarkis K. Mazmanian1  https://doi.org/10.1084/jem.20180794
  18. Gut Microbiota Has a Widespread and Modifiable Effect on Host Gene Regulation Allison L. Richards, a.Amanda L. Muehlbauer,c,d Adnan Alazizi, a Michael B. Burns,e Anthony Findley, a Francesco Messina, a Trevor J. Gould,c,d Camilla Cascardo, a Roger Pique-Regi, a,b Ran Blekhman,c,d Francesca Lucaa,b  https://doi.org/10.1128/mSystems.00323-18 (2019)
  19. An intermittent hypercaloric diet alters gut microbiota, prefrontal cortical gene expression and social behaviours in rats Amy C Reichelt 1*, Amy Loughman 1,5, Ashton Bernard 1, Mukesh Raipuria 1, Kirsten N   Abbott 3, James Dachtler 4, Thi Thu Hao Van 2, Robert J Moore 2   http://dx.doi.org/10.1101/328294
  20. Microglia and early brain development: An intimate journey Morgane S. Thion1*, Florent Ginhoux2,3, Sonia Garel.  http://science.sciencemag.org/ (2018)
  21. Deficient autophagy in microglia impairs synaptic pruning and causes social, behavioural defects H-J Kim1,2,3,4,6, M-H Cho1,2,3,4,6, WH Shim5, JK Kim5, E-Y Jeon1,2,3,4, D-H Kim1,2,3,4 and S-Y Yoon1,2,3,4 doi:10.1038/mp.2016.103
  22. In silico Identification of Metagenomic Signature Describing Neurometabolic Potential of Normal Human Gut Microbiota A. S. Kovtuna, b, *, O. V. Averinaa, c, N. V. Zakharevicha, A. S. Kasianova, and V. N. Danilenko DOI:10.1134/S1022795418090089  (2018)
  23. Neuron Number and Size in Prefrontal Cortex of Children With Autism Eric Courchesne, PhD, Peter R. Mouton, PhD, Michael E. Calhoun, PhD, Katerina Semendeferi, PhD, Clelia Ahrens-Barbeau, BS, Melodie J. Hallet, MS, Cynthia Carter Barnes, PhD, Karen Pierce, PhD (2011)
  24. Neurons in the fusiform gyrus are fewer and smaller in autism Imke A. J. van Kooten,1,2,3 Saskia J. M. C. Palmen,3 Patricia von Cappeln,4 Harry W. M. Steinbusch,1,2 Hubert Korr,4 Helmut Heinsen,5 Patrick R. Hof,6 Herman van Engeland3 and Christoph Schmitz doi:10.1093/brain/awn033
  25. Dysregulation of synaptic pruning as a possible link between intestinal microbiota dysbiosis and neuropsychiatric disorders Ahmed Eltokhi1 | Isabel E. Janmaat2 | Mohamed Genedi2 Bartholomeus C. M. Haarman Iris E. C. SommerDOI: 10.1002/jnr.24616
  26. Microglia: Immune Regulators of Neurodevelopment MaureenCowan1 and William.PetriJr https://doi.org/10.3389/fimmu.2018.02576
  27. Early Disruption of the Microbiome Leading to Decreased Antioxidant Capacity and Epigenetic Changes: Implications for the Rise in Autism Rebecca S. Eshraghi1*, Richard C. Deth2, Rahul Mittal3, Mayank Aranke3, Sae-In S. Kay4, Baharak Moshiree1 and Adrien A. Eshraghl   doi: 10.3389/fncel.2018.00256
  28. Fecal Microbiota Transplantation in Neurological Disorders Karuna E. W. Vendrik1,2,3, Rogier E. Ooijevaar2,4, Pieter R. C. de Jong5, Jon D. Laman6, Bob W. van Oosten7, Jacobus J. van Hilten5, Quinten R. Ducarmon1,8,Josbert J. Keller2,9,10, Eduard J. Kuijper1,2,3,8* and Maria Fiorella Contarin doi: 10.3389/fcimb.2020.00098
  29. The microbiota-gut-brain axis: An emerging role for the epigenome Tijs Louwies1, Anthony C Johnson2, Albert Orock1, Tian Yuan1 and Beverley Greenwood-Van Meerveld  DOI: 10.1177/1535370219891690
  30. The gut microbiota influences blood-brain barrier permeability in mice Viorica Braniste,1*† Maha Al-Asmakh,1* Czeslawa Kowal,2* Farhana Anuar,1 Afrouz Abbaspour,1 Miklós Tóth,3 Agata Korecka,1 Nadja Bakocevic,4 Ng Lai Guan,4 Parag Kundu,5 Balázs Gulyás,3,5 Christer Halldin,3,5 Kjell Hultenby,6 Harriet Nilsson,7 Hans Hebert,7 Bruce T. Volpe,8Betty Diamond,2‡ Sven Pettersson  DOI: 10.1126/scitranslmed.3009759
  31. Influences of the Gut Microbiota on DNA Methylation and Histone Modification Jianzhong Ye1,2 • Wenrui Wu1,2 • Yating Li1,2 • Lanjuan Li DOI 10.1007/s10620-017-4538-6
  32. Emerging Developments in Microbiome and Microglia Research: Implications for Neurodevelopmental Disorders Yeonwoo Lebovitz1, Veronica M. Ringel-Scaia1, Irving C. Allen1,2,3* and Michelle H. Theus doi: 10.3389/fimmu.2018.01993
  33. Human Intestinal Microbiota: Role in Development and Functioning of the Nervous System O. V. Averina* and V. N. Danilenko DOI: 10.1134/S0026261717010040
  34. Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study Dae-Wook Kang1†, James B. Adams2†, Ann C. Gregory3,15†, Thomas Borody4, Lauren Chittick5,15, Alessio Fasano6, Alexander Khoruts7,8,9, Elizabeth Geis2, Juan Maldonado1, Sharon McDonough-Means10, Elena L. Pollard2, Simon Roux5,15, Michael J. Sadowsky8,11, Karen Schwarzberg Lipson12, Matthew B. Sullivan3,5,15,16*, J. Gregory Caporaso12,13* and Rosa Krajmalnik-Brown DOI 10.1186/s40168-016-0225-7.
  35. Neurogenesis and pro-longevity signalling in young germ-free mice transplanted with the gut microbiota of old mice Parag Kundu1,2,3*, Hae Ung Lee1, Isabel Garcia-Perez4, Emmy Xue Yun Tay5, Hyejin Kim1,
  36. Llanto Elma Faylon2, Katherine A. Martin1, Rikky Purbojati2, Daniela I. Drautz-Moses2,
  37. Sujoy Ghosh6,7,8, Jeremy K. Nicholson9, Stephan Schuster2, Elaine Holmes4,10, Sven Pettersson
  1. Gut microbiota modulates genes involved in the astrocyte-neuron lactate shuttle in the hippocampus Michael Margineanu 1, Eoin Sherwin 2, Anna Golubeva 2, Veronica Peterson 2, Alan Hoban 3, Kieran Rea 2, John F. Cryan 4, Pierre Magistretti https://doi.org/10.1016/j.ibror.2019.07.1205.
  1. Regional Alterations in Purkinje Cell Density in Patients with Autism Jerry Skefos*, Christopher Cummings, Katelyn Enzer, Jarrod Holiday, Katrina Weed, Ezra Levy, Tarik Yuce, Thomas Kemper, Margaret Bauman doi:10.1371/journal.pone.0081255
  1. Screening of faecal microbiota transplant donors during the COVID-19 outbreak: suggestions for urgent updates from an international expert panel  https://doi.org/10.1016//Article in The Lancet Gastroenterology & Hepatology · March 2020  benjamin mulish et al
  2. Long-term benefit of Microbiota Transfer Therapy on autism symptoms and gut microbiota  Dae-Wook Kang 1,2,8, James B. Adams3, Devon M. Coleman3, Elena L. Pollard3, Juan Maldonado1,2, Sharon McDonough-Means4, J. Gregory Caporaso 5,6 & Rosa Krajmalnik-Brown  https://doi.org/10.1038/s41598-019-42183-0
  3. Microglia: Immune Regulators of Neurodevelopment MaureenCowan1 and William.PetriJr.2* doi: 10.3389/fimmu.2018.02576
  4. Human resident gut microbe Bacteroides thetaiotaomicron regulates colonic neuronal innervation and neurogenic function Rubina Aktar, Nabil Parkar, Regis Stentz, Lucas Baumard, Aimee Parker, Andrew Goldson, Arlaine Brion, Simon Carding, Ashley Blackshaw & Madusha Peirishttps://doi.org/10.1080/19490976.2020.1766936.
  5. Targeting microbiota-mitochondria inter-talk: Microbiota control mitochondria metabolism Y. Saint-Georges-Chaumet1, D. Attaf1,3, E. Pelletier1,2,3 and M. Edeas doi: 10.14715/CMB/2015.61.4.20
  6. Bisphenol an Exposure in Utero Disrupts Hypothalamic Gene Expression Particularly Genes Suspected in Autism Spectrum Disorders and Neuron and Hormone Signaling Anne D. Henriksen 1, Alejandro Andrade 2, Erin P. Harris 3, Emilie F. Rissman 3 and Jennifer T Wolstenholmedoi:10.3390/ijms21093129.
  7. Rauh V, Arunajadai S, Horton M, et al. Seven-year neurodevelopmental scores and prenatal exposure to chlorpyrifos, a common agricultural pesticide. Environ Health Perspect 2011;119:1196-201.doi:10.1289/ehp.1003160
  8. Yen J, Donerly S, Levin ED, Linney EA. Differential acetylcholinesterase inhibition of chlorpyrifos, diazinon and parathion in larval
  9. zebrafish. Neurotoxicol Teratol 2011;33:735-41. doi:10.1016/j. ntt.2011.10.004
  10. De Felice A, Greco A, Calamandrei G, Minghetti L. Prenatal exposure to the organophosphate insecticide chlorpyrifos enhances brain oxidative stress and prostaglandin E2 synthesis in a mouse model of idiopathic autism. J Neuroinflammation 2016;13:149. doi:10.1186/ s12974-016-0617-4
  11. Lyall K, Croen LA, Sjödin A, et al. Polychlorinated biphenyl and organochlorine pesticide concentrations in maternal mid-pregnancy serum samples: association with autism spectrum disorder and intellectual disability. Environ Health Perspect 2017;125:474-80.doi:10.1289/EHP277
  12. Lee I, Eriksson P, Fredriksson A, Buratovic S, Viberg H. Developmental neurotoxic effects of two pesticides: behaviour and neuroprotein studies on endosulfan and cypermethrin. Toxicology 2015;335:1-10.doi:10.1016/j.tox.2015.06.010
  13. De Felice A, Greco A, Calamandrei G, Minghetti L. Prenatal exposure to the organophosphate insecticide chlorpyrifos enhances brain oxidative stress and prostaglandin E2 synthesis in a mouse model of idiopathic autism. J Neuroinflammation 2016;13:149. doi:10.1186/ s12974-016-0617-4
  14.  Pearson BL, Simon JM, McCoy ES, Salazar G, Fragola G, Zylka MJ. Identification of chemicals that mimic transcriptional changes associated with autism, brain ageing and neurodegeneration. Nat Commun 2016;7:11173. doi:10.1038/ncomms11173
  15.  Pearson BL, Simon JM, McCoy ES, Salazar G, Fragola G, Zylka MJ. Identification of chemicals that mimic transcriptional changes associated with autism, brain ageing and neurodegeneration. Nat Commun 2016;7:11173. doi:10.1038/ncomms11173
  16. Role of the Gut Microbiota in the Pathophysiology of Autism Spectrum Disorders Clinical and Preclinical Evidence Léa Roussin, Naika Prince  Paula Perez-Pardo, Aletta D. Kraneveld, Sylvie Rabot  and Laurent Naudon http://dx.doi.org/10.3390/microorganisms8091369
  17. Synaptic signalling and aberrant RNA splicing in autism spectrum disorders Ryan M. Smith1 andWolfgang Sadee doi: 10.3389/fnsyn.2011.00001
  1. An integrated transcriptomic analysis of autism spectrum disorder Yi He1,2, Yuan Zhou1, Wei Ma3 & Juan Wang https://doi.org/10.1038/s41598-019-48160-x
  2. Patches of Disorganization in the Neocortex of Children with Autism Rich Stoner, PhD, Maggie L. Chow, PhD, Maureen P. Boyle, PhD, Susan M. Sunkin, PhD, Peter R. Mouton, PhD, Subhojit Roy, M.D., PhD, Anthony Wynshaw-Boris, M.D., PhD, Sophia A. Colamarino, PhD, Ed S. Lein, PhD, and Eric Courchesne, PhD.
  3. Toxic Chemicals Found in Minority Cord Blood https://www.ewg.org/news-insights/news-release/toxic-chemicals-found-minority-cord-blood.
  4. Danish national guideline for the treatment of Clostridioides difficile infection and use of faecal microbiota transplantation (FMT) Simon Mark Dahl Baunwall, Jens Frederik Dahlerup, Jørgen Harald Engberg, Christian Erikstrup, Morten Helms, Mie Agerbæk Juel, Jens Kjeldsen, Hans Linde Nielsen, Anna Christine Nilsson, Anne Abildtrup Rode, Lars Vinter- Jensen & Christian Lodberg Hvashttps://doi.org/10.1080/00365521.2021.1922749
  5. Stool Banking for Fecal Microbiota Transplantation: Methods and Operations at a Large Stool Bank ustin Chen, Amanda ZamanBharat Ramakrishna and Scott W. Olesen*† on behalf of OpenBiome Team https://doi.org/10.3389/fcimb.2021.622949
  6. Miae Oh1*, Da-Yea Song2*, Guiyoung Bong2, Nan-He Yoon3, So Yoon Kim4, Joo-Hyun Kim2, Jongmyeong Kim2, and Hee Jeong Yoo validating the Autism Diagnostic Interview-Revised in the Korean Population https://doi.org/10.30773/pi.2020.0337
  7. The Molecular Basis of autism S. Hossein Fatemi DOI 10.1007/978-1-4939-2190-
  8. MicroRNA profiling in adults with high- functioning autism spectrum disorder Masatoshi Nakata1†, Ryo Kimura1*†, Yasuko Funabiki2,3, Tomonari Awaya1, Toshiya Murai3 and Masatoshi Hagiwara https://doi.org/10.1186/s13041-019-0508-6

error: Content is protected !!